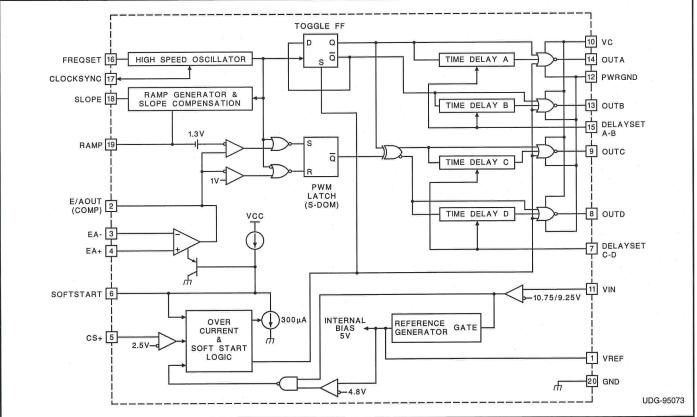


Phase Shift Resonant Controller

FEATURES

- Zero to 100% Duty Cycle Control
- Programmable Output Turn-On Delay
- Compatible with Voltage or Current Mode Topologies
- Practical Operation at Switching Frequencies to 1MHz
- Four 2A Totem Pole Outputs
- 10MHz Error Amplifier
- Undervoltage Lockout
- Low Startup Current –150μA
- Outputs Active Low During UVLO
- Soft-Start Control
- Latched Over-Current Comparator With Full Cycle Restart
- Trimmed Reference


DESCRIPTION

The UC1875 family of integrated circuits implements control of a bridge power stage by phase-shifting the switching of one half-bridge with respect to the other, allowing constant frequency pulse-width modulation in combination with resonant, zero-voltage switching for high efficiency performance at high frequencies. This family of circuits may be configured to provide control in either voltage or current mode operation, with a separate over-current shutdown for fast fault protection.

A programmable time delay is provided to insert a dead-time at the turn-on of each output stage. This delay, providing time to allow the resonant switching action, is independently controllable for each output pair (A-B, C-D).

With the oscillator capable of operation at frequencies in excess of 2MHz, overall switching frequencies to 1MHz are practical. In addition to the standard free running mode, with the CLOCKSYNC pin, the user may configure these devices to accept an external clock synchronization signal, or may lock together up to 5 units with the operational frequency determined by the fastest device.

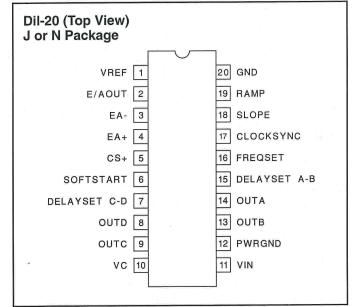
Protective features include an undervoltage lockout which maintains all outputs in an active-low state until the supply reaches a 10.75V threshold. 1.5V hysteresis is built in for reliable, boot-strapped chip supply. Over-current protection is provided, and will latch the outputs in the OFF state within 70nsec of a fault. The current-fault circuitry implements full-cycle restart operation. (continued)

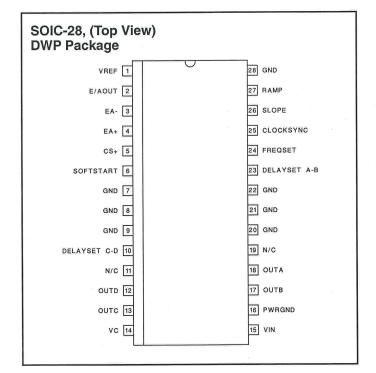
BLOCK DIAGRAM

SLUS229C - JULY 1999 - REVISED MAY 2007

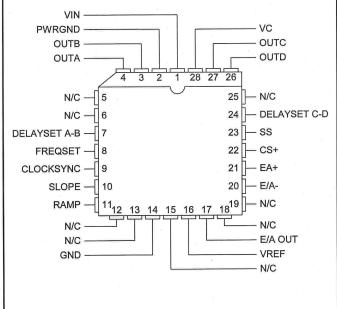
DESCRIPTION (cont.)

Additional features include an error amplifier with bandwidth in excess of 7MHz, a 5V reference, provisions for soft-starting, and flexible ramp generation and slope compensation circuitry.

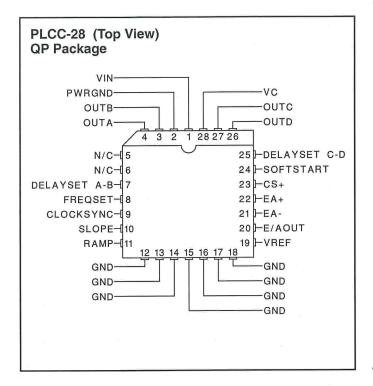

These devices are available in 20-pin DIP, 28-pin "bat-wing" SOIC and 28 lead power PLCC plastic packages for operation over both 0°C to 70°C and -25°C to +85°C temperature ranges; and in hermetically sealed cerdip, surface mount, and ceramic leadless chip carrier packages for -55°C to +125°C operation.


ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VC, VIN) 20V
Output Current, Source or Sink
DC
Pulse (0.5μs)3A
Analog I/Os
(Pins 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19) –0.3 to 5.3V
Storage Temperature Range65°C to +150°C
Junction Temperature55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Note: Pin references are to 20 pin packages. All voltages are
with respect to ground. Currents are positive into, neg-
ative out of, device terminals. Consult Unitrode
databook for information regarding thermal specifica-
tions and limitations of packages.


Device	UVLO Turn-On	UVLO Turn-Off	Delay Set
UC1875	10.75	9.25V	Yes
UC1876	15.25V	9.25V	Yes
UC1877	10.75V	9.25V	No
UC1878	15.25V	9.25V	No

CONNECTION DIAGRAMS



CLCC-28 (Top View) L Package

2

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1875/6/7/8, $-25^{\circ}C < T_A < 85^{\circ}C$ for the UC2875/6/7/8 and $0^{\circ}C < T_A < 70^{\circ}C$ for the UC3875/6/7/8, VC = VIN = 12V, R_{FREQSET} = $12k\Omega$, C_{FREQSET} = 330pF, R_{SLOPE} = $12k\Omega$, C_{RAMP} = 200pF, C_{DELAYSET A-B} = C_{DELAYSET C-D} = 0.01μ F, I_{DELAYSET A-B} = I_{DELAYSET C-D} = -500μ A, T_A = T_J.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Undervoltage Lockout					
Start Threshold	UC1875/UC1877		10.75	11.75	V
	UC1876/UC1878		15.25		V V
UVLO Hysteresis	UC1875/UC1877	0.5	1.25	2.0	V
-	UC1876/UC1878		6.0		V
Supply Current					
I _{IN} Startup	$VIN = 8V, VC = 20V, R_{SLOPE} \text{ open}, I_{DELAY} = 0$		150	600	μΑ
I _C Startup	VIN = 8V, VC = 20V, R_{SLOPE} open, $I_{DELAY} = 0$		10	100	μΑ
l _{IN}			30	44	mA
lc			15	30	mA
Voltage Reference					
Output Voltage	$T_J = +25^{\circ}C$	4.92	5	5.08	V
Line Regulation	11 < VIN < 20V		1	10	mV
Load Regulation	$I_{VREF} = -10 \text{mA}$		5	20	mV
Total Variation	Line, Load, Temperature	4.9		5.1	V
Noise Voltage	10Hz to 10kHz		50		μVrms
Long Term Stability	T _J = 125°C, 1000 hours		2.5		mV
Short Circuit Current	$VREF = 0V, T_J = 25^{\circ}C$		60		mA

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1875/6/7/8, $-25^{\circ}C < T_A < 85^{\circ}C$ for the UC2875/6/7/8 and $0^{\circ}C < T_A < 70^{\circ}C$ for the UC3875/6/7/8, VC = VIN = 12V, $R_{FREQSET} = 12k\Omega$, $C_{FREQSET} = 330pF$, $R_{SLOPE} = 12k\Omega$, $C_{RAMP} = 200pF$, $C_{DELAYSET A-B} = C_{DELAYSET C-D} = 0.01\muF$, $I_{DELAYSET A-B} = I_{DELAYSET C-D} = -500\muA$, $T_A = T_J$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
Error Amplifier						
Offset Voltage		1	5	15	mV	
Input Bias Current			0.6	3	μΑ	
AVOL	$1V < V_{E/AOUT} < 4V$	60	90		dB	
CMRR	1.5V < V _{CM} < 5.5V	75	95		dB	
PSRR	11V < VIN < 20V	85	100		dB	
Output Sink Current	$V_{E/AOUT} = 1V$	1	2.5		mA	
Output Source Current	$V_{E/AOUT} = 4V$		-1.3	-0.5	mA	
Output Voltage High	$I_{E/AOUT} = -0.5 mA$	4	4.7	5	V	
Output Voltage Low	$I_{E/AOUT} = 1 m A$	0	0.5	1	V	
Unity Gain BW	(Note 8)	7	11		MHz	
Slew Rate	(Note 8)	6	11		V/µsec	
PWM Comparator						
Ramp Offset Voltage	T _J = 25°C (Note 3)		1.3		V	
Zero Phase Shift Voltage	(Note 4)	0.55	0.9		V	
PWM Phase Shift (Note1) and (Note 7)						
	V _{E/AOUT} < Zero Phase Shift Voltage	0	0.5	2	%	
Output Skew (Note 1) and (Note 7)	V _{E/AOUT} < 1V		5	±20	nsec	
Ramp to Output Delay, (Note 8)	UC3875/6/7/8 (Note 6)		65	100	nsec	
	UC1875/6/7/8, UC2875/6/7/8 (Note 6)		65	125	nsec	
Oscillator						
Initial Accuracy	$T_J = 25^{\circ}C$	0.85	1	1.15	MHz	
Voltage Stability	11V < VIN < 20V	1	0.2	2	%	
Total Variation	Line, Temperature	0.80		1.20	MHz	
Sync Pin Threshold	$T_J = 25^{\circ}C$		3.8		V	
Clock Out Peak	$T_J = 25^{\circ}C$		4.3		V	
Clock Out Low	$T_J = 25^{\circ}C$		3.3		V	
Clock Out Pulse Width	$R_{CLOCKSYNC} = 3.9 k\Omega$		30	100	nsec	
Maximum Frequency, (Note 7)	$R_{FREQSET} = 5k\Omega$	2			MHz	
Ramp Generator/Slope Compensation						
Ramp Current, Minimum	$I_{SLOPE} = 10 \mu A$, $V_{FREQSET} = VREF$		-11	-14	μΑ	
Ramp Current, Maximum	I _{SLOPE} = 1mA, V _{FREQSET} = VREF	-0.8	-0.95		mA	
Ramp Valley			0		V	
Ramp Peak - Clamping Level	$R_{FREQSET} = 100 k\Omega$	3.8	4.1	5.0	V	
Current Limit						
Input Bias	V_{CS} + = 3V	1	2	5	μA	
Threshold Voltage		2.4	2.5	2.6	V	
Delay to Output, (Note 8)	UC3875/6/7/8	1	85	125	nsec	
	UC1875/6/7/8, UC2875/6/7/8		85	150	nsec	

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1875/6/7/8, $-25^{\circ}C < T_A < 125^{\circ}C$ 85°C for the UC2875/6/7/8 and 0°C < T_A < 70°C for the UC3875/6/7/8, VC = VIN = 12V, $R_{FREQSET}$ = 12k Ω , $C_{FREQSET}$ = 330pF, $R_{SLOPE} = 12k\Omega$, $C_{BAMP} = 200pF$, $C_{DELAYSET A-B} = C_{DELAYSET C-D} = 0.01\mu$ F, $I_{DELAYSET A-B} = I_{DELAYSET C-D} = -500\mu$ A, $T_A = T_J$.

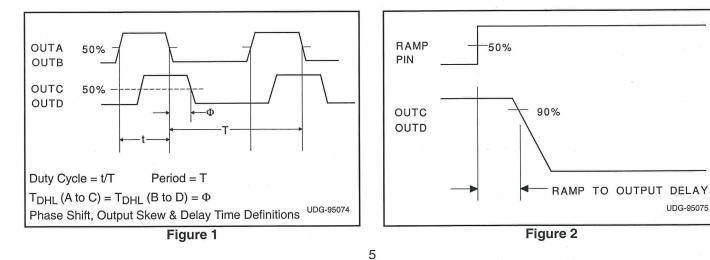
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Soft-Start/Reset Delay					
Charge Current	$V_{SOFTSTART} = 0.5V$	-20	-9	-3	μΑ
Discharge Current	V _{SOFTSTART} = 1V	120	230		μΑ
Restart Threshold		4.3	4.7		V
Discharge Level			300		mV
Output Drivers				r	·
Output Low Level	$I_{OUT} = 50 \text{mA}$		0.2	0.4	V
	$I_{OUT} = 500 \text{mA}$		1.2	2.6	V
Output High Level	$I_{OUT} = -50 \text{mA}$		1.5	2.5	V
	$I_{OUT} = -500 \text{mA}$		1.7	2.6	V
Delay Set (UC1875 and UC1876 only)					
Delay Set Voltage	$I_{DELAY} = -500 \mu A$	2.3	2.4	2.6	V
Delay Time, (Note 8)	I _{DELAY} = -250μA (Note 5) (UC3875/6/7/8, UC2875/6/7/8)	150	250	400	nsec
	I _{DELAY} = -250μA (Note 5) (UC1875/6/7/8)	150	250	600	nsec

Note 1: Phase shift percentage (0% = 0°, 100% = 180°) is defined as $\theta = \frac{200}{T} \Phi$ %, where θ is the phase shift, and Φ and T are defined in Figure 1. At 0% phase shift, Φ is the output skew.

Note 2: Delay time is defined as delay = T(1/2-(duty cycle)), where T is defined in Fig. 1.

Note 3: Ramp offset voltage has a temperature coefficient of about -4mV/°C.

Note 4: Zero phase shift voltage has a temperature coefficient of about -2mV/°C.


Note 5: Delay time can be programmed via resistors from the delay set pins to ground. Delay time $\cong \frac{62.5 \cdot 10^{-12}}{I_{DELAY}}$ sec. Where

 $I_{DELAY} = \frac{Delay \ set \ voltage}{Delay}$ The recommended range for I_{DELAY} is $25\mu A \le I_{DELAY} \le 1mA$ RDELAY

Note 6: Ramp delay to output time is defined in Fig. 2.

Note 7: Not production tested at -55°C.

Note 8: Not production tested.

PIN DESCRIPTIONS

CLOCKSYNC (bi-directional clock and synchronization pin): Used as an output, this pin provides a clock signal. As an input, this pin provides a synchronization point. In its simplest usage, multiple devices, each with their own local oscillator frequency, may be connected together by the CLOCKSYNC pin and will synchronize on the fastest oscillator. This pin may also be used to synchronize the device to an external clock, provided the external signal is of higher frequency than the local oscillator. A resistor load may be needed on this pin to minimize the clock pulse width.

E/AOUT (error amplifier output): This is is the gain stage for overall feedback control. Error amplifier output voltage levels below 1 volt will force 0° phase shift. Since the error amplifier has a relatively low current drive capability, the output may be overridden by driving with a sufficiently low impedance source.

CS+ (current sense): The non-inverting input to the current-fault comparator whose reference is set internally to a fixed 2.5V (separate from VREF). When the voltage at this pin exceeds 2.5V the current-fault latch is set, the outputs are forced OFF and a SOFT-START cycle is initiated. If a constant voltage above 2.5V is applied to this pin the outputs are disabled from switching and held in a low state until the CS+ pin is brought below 2.5V. The outputs may begin switching at 0 degrees phase shift before the SOFTSTART pin begins to rise -- this condition will not prematurely deliver power to the load.

FREQSET (oscillator frequency set pin): A resistor and a capacitor from FREQSET to GND will set the oscillator frequency.

DELAYSET A-B, DELAYSET C-D (output delay control): The user programmed current flowing from these pins to GND set the turn-on delay for the corresponding output pair. This delay is introduced between turn-off of one switch and turn-on of another in the same leg of the bridge to provide a dead time in which the resonant switching of the external power switches takes place. Separate delays are provided for the two half-bridges to accommodate differences in the resonant capacitor charging currents.

EA– (error amplifier inverting input): This is normally connected to the voltage divider resistors which sense the power supply output voltage level.

EA+ (error amplifier non-inverting input): This is normally connected to a reference voltage used for comparison with the sensed power supply output voltage level at the EA+ pin.

GND (signal ground): All voltages are measured with respect to GND. The timing capacitor, on the FREQSET

pin, any bypass capacitor on the VREF pin, bypass capacitors on VIN and the ramp capacitor, on the RAMP pin, should be connected directly to the ground plane near the signal ground pin.

OUTA-OUTD (outputs A-D): The outputs are 2A totem-pole drivers optimized for both MOSFET gates and level-shifting transformers. The outputs operate as pairs with a nominal 50% duty-cycle. The A-B pair is intended to drive one half-bridge in the external power stage and is syncronized with the clock waveform. The C-D pair will drive the other half-bridge with switching phase shifted with respect to the A-B outputs.

PWRGND (power ground): VC should be bypassed with a ceramic capacitor from the VC pin to the section of the ground plane that is connected to PWRGND. Any required bulk reservoir capacitor should parallel this one. Power ground and signal ground may be joined at a single point to optimize noise rejection and minimize DC drops.

RAMP (voltage ramp): This pin is the input to the PWM comparator. Connect a capacitor from here to GND. A voltage ramp is developed at this pin with a slope:

$$\frac{dV}{dT} = \frac{Sense \, Voltage}{R_{SLOPE} \bullet C_{RAMP}}$$

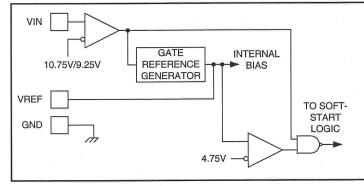
Current mode control may be achieved with a minimum amount of external circuitry, in which case this pin provides slope compensation.

Because of the 1.3V offset between the ramp input and the PWM comparator, the error amplifier output voltage can not exceed the effective ramp peak voltage and duty cycle clamping is easily achievable with appropriate values of R_{SLOPE} and C_{RAMP} .

SLOPE (set ramp slope/slope compensation): A resistor from this pin to VCC will set the current used to generate the ramp. Connecting this resistor to the DC input line voltage will provide voltage feed-forward.

SOFTSTART (soft start): SOFTSTART will remain at GND as long as VIN is below the UVLO threshold. SOFTSTART will be pulled up to about 4.8V by an internal 9 μ A current source when VIN becomes valid (assuming a non-fault condition). In the event of a current-fault (CS+ voltage exceeding 2.5V), SOFTSTART will be pulled to GND and them ramp to 4.8V. If a fault occurs during the SOFTSTART cycle, the outputs will be immediately disabled and SOFTSTART must charge fully prior to resetting the fault latch.

For paralleled controllers, the SOFTSTART pins may be paralled to a single capacitor, but the charge currents will be additive.

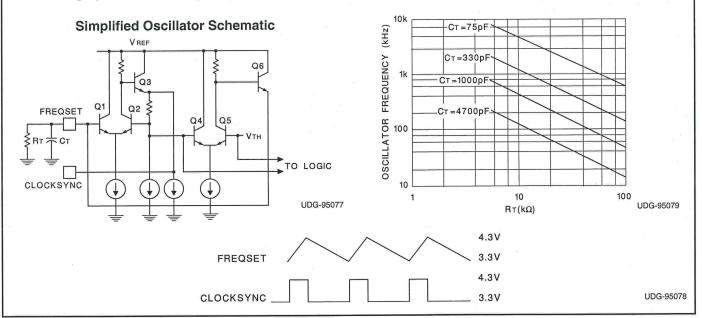

PIN DESCRIPTIONS (cont.)

VC (output switch supply voltage): This pin supplies power to the output drivers and their associated bias circuitry. Connect VC to a stable source above 3V for normal operation, above 12V for best performance. This supply should be bypassed directly to the PWRGND pin with low ESR, low ESL capacitors.

VIN (primary chip supply voltage): This pin supplies power to the logic and analog circuitry on the integrated circuit that is not directly associated with driving the output stages. Connect VIN to a stable source above 12V for normal operation. To ensure proper chip functionality, these devices will be inactive until VIN exceeds the upper undervoltage lockout threshold. This pin should by bypassed directly to the GND pin with low ESR, low ESL capacitors. NOTE: When VIN exceeds the UVLO threshold the supply current (I_{IN}) will jump from about 100µA to a current in excess of 20µA. If the UC1875 is not connected to a well bypassed supply, it may immediately enter UVLO again.

VREF: This pin is an accurate 5V voltage reference. This output is capable of delivering about 60mA to peripheral circuitry and is internally short circuit current limited. VREF is disabled while VIN is low enough to force the chip into UVLO. The circuit is also in UVLO until VREF reaches approximately 4.75V. For best results bypass VREF with a 0.1μ F, low ESR, low ESL, capacitor to the GND pin.

APPLICATION INFORMATION Undervoltage Lockout Section



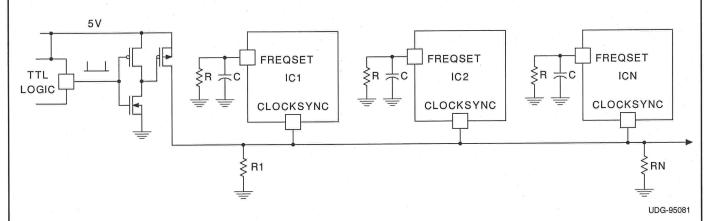
When power is applied to the circuit and VIN is below the upper UVLO threshold, I_{IN} will be below 600μ A, the reference generator will be off, the fault latch is reset, the soft-start pin is discharged, and the outputs are actively held low. When VIN exceeds the upper UVLO threshold, the reference generator turns on. All else remains in the shut-down mode until the output of the reference, VREF, exceeds 4.75V.

UDG-99136

The high frequency oscillator may be either free-running or externally synchronized. For free-running operation, the frequency is set via an ex-

ternal resistor and capacitor to ground from the FREQSET pin.

APPLICATION INFORMATION (cont.) Synchronizing The Oscillator


The CLOCKSYNC pin of the oscillator may be used to synchronize multiple UC1875 devices simply by connecting the CLOCKSYNC of each UC1875 to the others: FREQSET FREQSET FREQSET ≶R 늒C ≶в ¦⇒с IC2 ICN ₹R С IC1 CLOCKSYNC CLOCKSYNC CLOCKSYNC 1875/6/7/8s only **≷** R1 ≷RΝ UDG-95080

All ICs will sync to chip with the fastest local oscillator.

R1 & RN may be needed to keep sync pulse narrow due to capacitance on line.

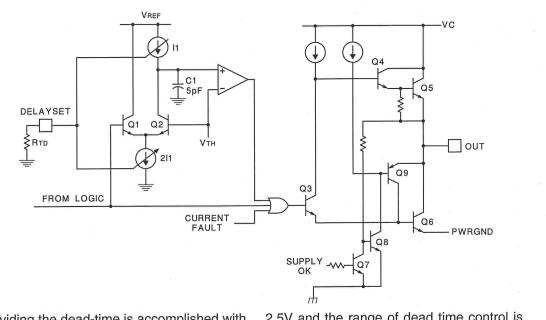
R1 & RN may also be needed to properly terminate R_{SYNC} line.

Syncing to external TTL/CMOS

ICs will sync to fastest chip or TTL clock if it is higher frequency.

R & RN may be needed for same reasons as above

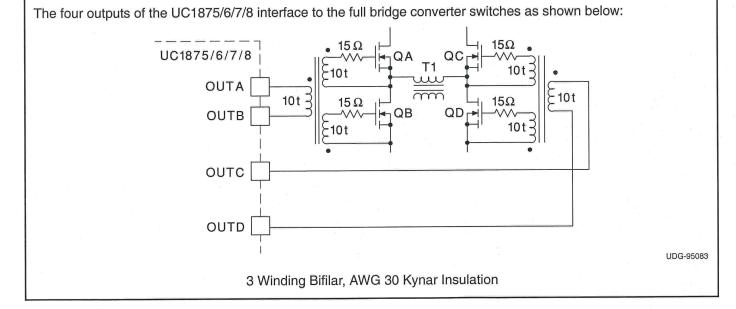
Although each UC1875/6/7/8 has a local oscillator frequency, the group of devices will synchronize to the fastest oscillator driving the CLOCKSYNC pin. This arrangement allows the synchronizing connection between ICs to be broken without any local loss of functionality.


Synchronizing the device to an external clock signal may be accomplished with a minimum of external circuitry, as shown in the previous figure. Capacitive loading on the CLOCKSYNC pin will increase the clock pulse width, and may adversely effect system performance. Therefore, a resistor to ground from the CLOCKSYNC pin is optional, but may be required to offset capacitive loading on this pin. These resistors are shown in the oscillator schematics as R1, RN.

UDG-95082

APPLICATION INFORMATION (cont.) Delay Blocks And Output Stages

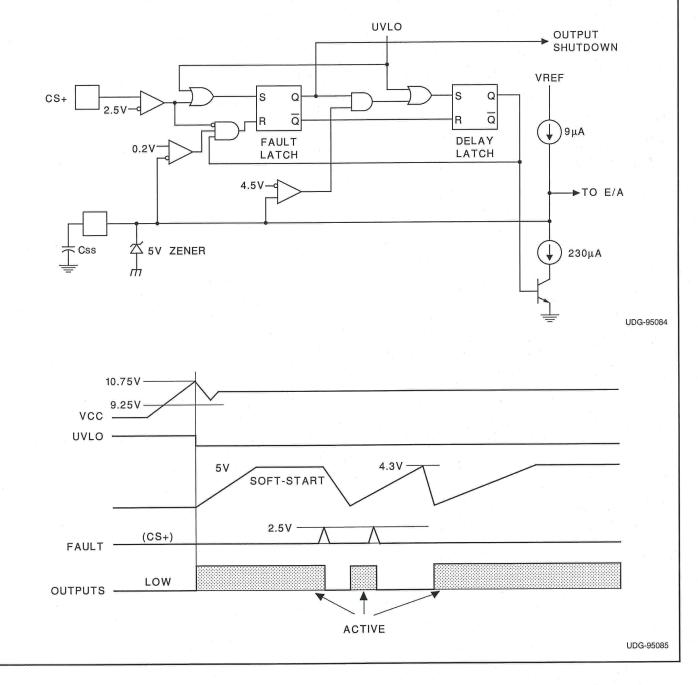
In each of the output stages, transistors Q3 through Q6 form a high-speed totem-pole driver which will source or sink more than one amp peak with a total delay of approximately 30 nanoseconds. To ensure a low output level prior to turn-on, transistors Q7 through Q9 form a


self-biased driver to hold Q6 on prior to the supply reaching its turn-on threshold. This circuit is operable when the chip supply is zero. Q6 is also turned on and held low with a signal from the fault logic portion of the chip.

The delay providing the dead-time is accomplished with C1 which must discharge to V_{TH} before the output can go high. The time is defined by the current sources, I1, which is programmed by an external resistor, R_{TD} . The voltage on the Delay Set pins is internally regulated to

2.5V and the range of dead time control is from 50 to 200 nanoseconds. NOTE: There is no way to disable the delay circuitry, and the delay time must be programmed.

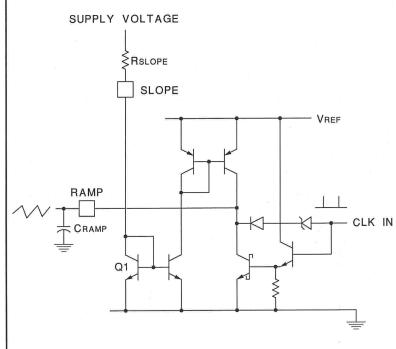
Output Switch Orientation


APPLICATION INFORMATION (cont.) Fault/Soft-Start

The fault control circuitry provides two forms of power shutdown:

- Complete turn-off of all four output power stages.
- · Clamping the phase shift command to zero.

Complete turn-off is ordered for an over-current fault or a low supply voltage. When the SOFTSTART pin reaches its low threshold, switching is allowed to proceed while the phase-shift is advanced from zero to its nominal value with the time constant of the SOFT-START capacitor.


The fault logic insures that a continuous fault will institute a low frequency "hiccup" retry cycle by forcing the SOFT-START capacitor to charge through its full cycle between each restart attempt.

APPLICATIONS INFORMATION (cont.) Slope/Ramp Pins

The ramp generator may be configured for the following control methods:

- Voltage Mode
- Voltage Feedforward
- Current Mode
- Current Mode with Slope Compensation

Voltage Mode Operation

The figure below shows a voltage-mode configuration. With R_{SLOPE} tied to a stable voltage source, the waveform on C_{RAMP} will be a constant-slope ramp, providing conventional voltage-mode control. If R_{SLOPE} is connected to the power supply input voltage, a variable-slope ramp will provide voltage feedforward.

1. Simple voltage mode operation achieved by placing $\mathsf{R}_{\mathsf{SLOPE}}$ between VIN and SLOPE.

2. Voltage Feedforward achieved by placing R_{SLOPE} between supply voltage and SLOPE pin of UC1875.

RAMP

$$\frac{dV}{dT} \approx \frac{V_{Rslope}}{R_{SLOPE} \bullet C_{RAMP}}$$

UDG-95086

For current-mode control the ramp generator may be disabled by grounding the slope pin and using the ramp pin as a direct current sense input to the PWM comparator.

22-Jun-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-9455501M3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9455501M3A UC1875L/ 883B	Samples
5962-9455501MRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9455501MR A UC1875J/883B	Samples
UC1875J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	UC1875J	Samples
UC1875J883B	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9455501MR A UC1875J/883B	Samples
UC1875L	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	UC1875L	Samples
UC1875L883B	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9455501M3A UC1875L/ 883B	Samples
UC2875DWP	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-25 to 85	UC2875DWP	Samples
UC2875DWPG4	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-25 to 85	UC2875DWP	Samples
UC2875DWPTR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-25 to 85	UC2875DWP	Samples
UC2875N	ACTIVE	PDIP	Ν	20	18	Green (RoHS & no Sb/Br)	SN Call TI	N / A for Pkg Type	-25 to 85	UC2875N	Samples
UC2875NG4	ACTIVE	PDIP	Ν	20	18	Green (RoHS & no Sb/Br)	Call TI	N / A for Pkg Type	-25 to 85	UC2875N	Samples
UC3875DWP	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3875DWP	Samples
UC3875DWPG4	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3875DWP	Samples
UC3875DWPTR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3875DWP	Samples
UC3875N	ACTIVE	PDIP	Ν	20	18	Green (RoHS & no Sb/Br)	SN CU NIPDAU	N / A for Pkg Type	0 to 70	UC3875N	Samples

22-Jun-2018

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UC3875NG4	ACTIVE	PDIP	Ν	20	18	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3875N	Samples
UC3876N	ACTIVE	PDIP	Ν	20	18	Green (RoHS & no Sb/Br)	SN Call TI	N / A for Pkg Type	0 to 70	UC3876N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1875, UC2875, UC3875 :

PACKAGE OPTION ADDENDUM

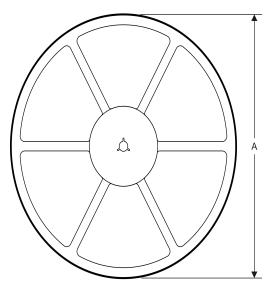
22-Jun-2018

• Catalog: UC3875

- Enhanced Product: UC2875-EP
- Military: UC1875
- Space: UC1875-SP

NOTE: Qualified Version Definitions:

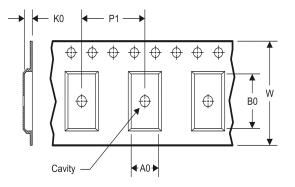
- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

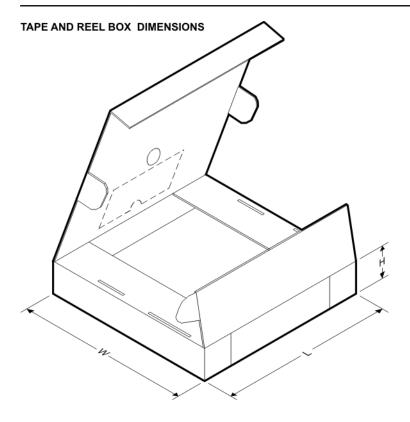
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

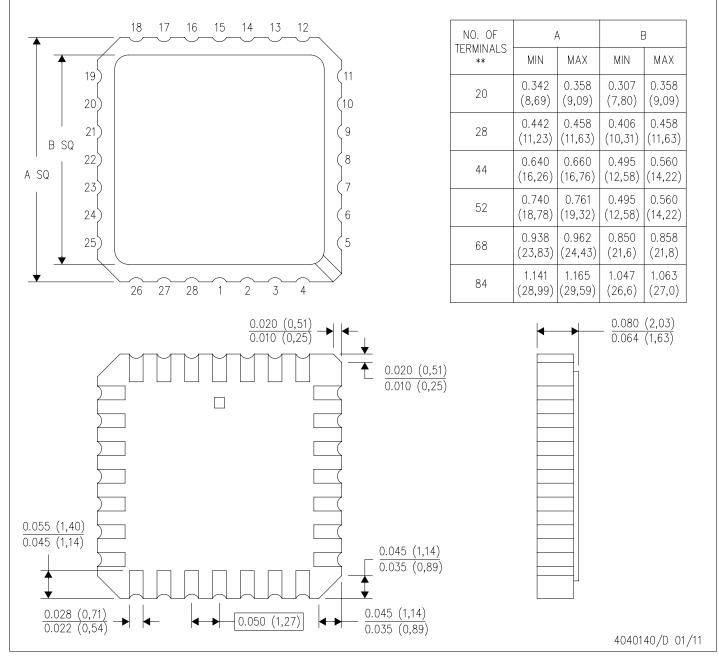

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC2875DWPTR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
UC3875DWPTR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC2875DWPTR	SOIC	DW	28	1000	367.0	367.0	55.0
UC3875DWPTR	SOIC	DW	28	1000	367.0	367.0	55.0

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

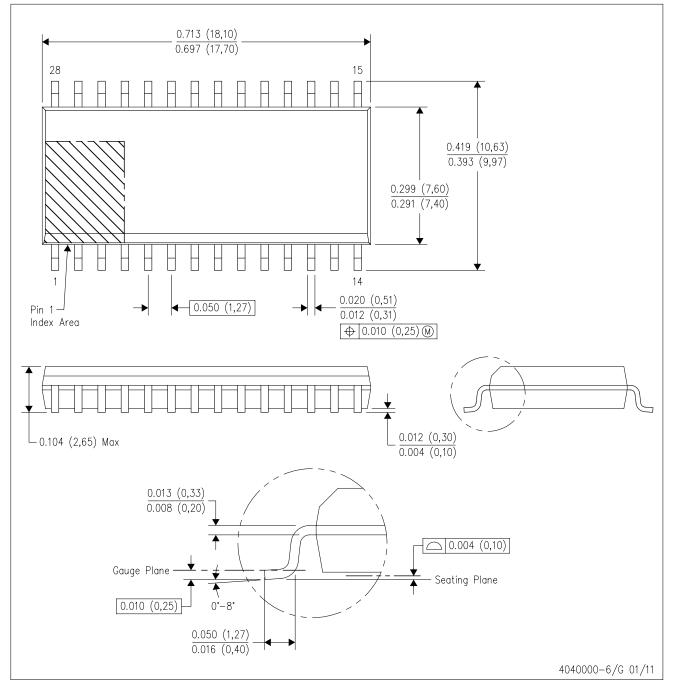
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

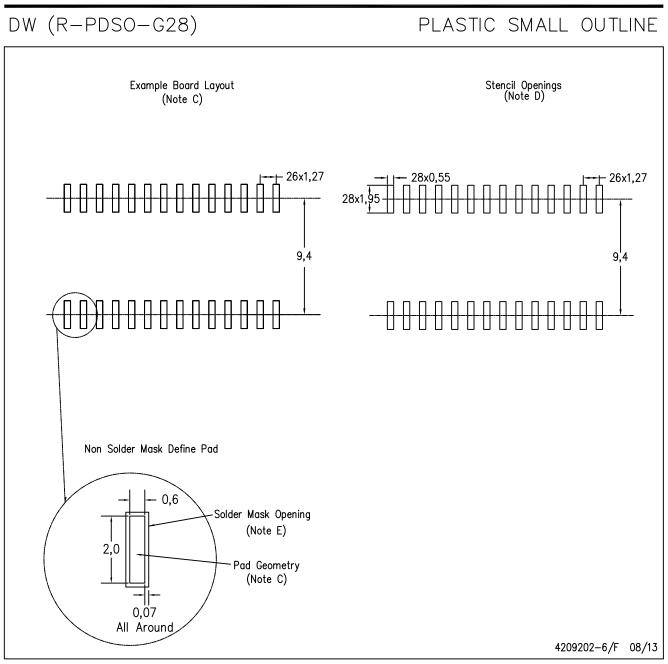
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated